7-Halogenated 7-Deaza-2'-deoxyxanthine 2'-Deoxyribonucleosides

by Frank Seela* and Khalil Shaikh

Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, D-49069 Osnabrück, and Center for Nanotechnology (CeNTech), Gievenbecker Weg 11, D-48149 Münster

(phone: +49-(0)541-969-2791; fax: +49-(0)541-969-2370; e-mail: Frank.Seela@uni-osnabrueck.de)

The synthesis of the 7-halogenated derivatives 1b (7-bromo) and 1c (7-iodo) of 7-deaza-2'-deoxyxanthosine (1a) is described. A partial $Br \rightarrow I$ exchange was observed when the demethylation of 6-methoxy precursor compound 4b was performed with Me_3SiCI/NaI . This reaction is circumvented by the nucleophilic displacement of the MeO group under strong alkaline conditions. The halogenated 7-deaza-2'-deoxyxanthosine derivatives 1b.c show a decreased S-conformer population of the sugar moiety compared to the nonhalogenated 1a. They are expected to form stronger triplexes when they replace 1a in the $1 \cdot dA \cdot dT$ base triplet.

Introduction. – The synthesis of 7-deaza-2'-deoxyxanthosine (**1a**) *via* the glycosylation of 2,4-dichloro-7*H*-pyrrolo[2,3-*d*]pyrimidine was already reported from our laboratory in 1985 [1]. Later the nucleoside was prepared by a deamination/demethylation route from 4-methoxy-7*H*-pyrrolo[2,3-*d*]pyrimidin-2-amine 2'-deoxyribonucleoside **2a** [2]. Compound **1a** was incorporated into oligonucleotides without base protection by solid-phase synthesis by using phosphonate chemistry [2]. Triplexes containing 7-deazaxanthine in place of thymine showed a high third-strand-binding affinity under neutral conditions [2]. Contrary to the extremely labile 2'-deoxyxanthosine (**3**), in which the glycosylic bond hydrolyzes spontaneously under physiological conditions [3–5], the glycosylic bond of the 7-deazapurine nucleoside **1a** is resistant to 'depurination' [1][2].

purine numbering systematic numbering

Within the series of 9-halogenated 7-deazapurine nucleosides related to dA [6] [7], dG [8], dI [9], or $isoG_d$ [10], we have shown that lipophilic electron-withdrawing 7-substituents increase the duplex stability [11–13]. Due to findings reported for other

triplex-forming 9-halogenated deazapurine nucleosides [14], it is supposed that compounds **1b**,**c** can show a similar stabilizing effect when incorporated in triplexes. Also, stable duplexes are expected when compounds **1b**,**c** base pair with pyrimidine-2,4-diamine nucleosides [15].

This report describes the synthesis and the conformational properties of the 7-bromo and 7-iodo derivatives **1b**,**c** of 7-deaza-2'-deoxyxanthosine (**1a**) from compounds **2b**,**c** as key intermediates. Preliminary results of this work appeared as a short communication [16].

Results and Discussion. - 1. Synthesis and Characterization. Starting materials for the synthesis of **1b**,c were the fully protected nucleosides **4b**,c which were prepared by the regioselective bromination or iodination of 7-[2-deoxy-3,5-bis-O-(2-methylpropanoyl)- β -D-erythro-pentofuranosy]-2-(formylamino)-4-methoxy-7H-pyrrolo[2,3-d]pyrimidine with N-bromo- and N-iodosuccinimide, as described previously by our laboratory [8]. Zemplen deprotection of 4b,c in 0.5N NaOMe/MeOH at room temperature furnished compounds 2b,c in almost quantitative yield (Scheme). These conditions displaced neither the 4-MeO group nor the 7-halogeno substituents. Deamination of 2b,c with NaNO₂/AcOH yielded the 2-oxo nucleosides 5b,c. Next, the demethylation of 5c was performed under conditions described for 4a with Me₃SiCl/ NaI in MeCN [2], yielding compound 1c in 91% yield. Under the same conditions, a partial halogen exchange (Br \rightarrow I) was observed for compound **5b** [17][18], yielding a nucleoside mixture 1b/1c. This was confirmed by the appearance of the characteristic ¹³C-NMR C(7) signals (purine numbering; δ (C-Br) 91.19, δ (C-I) 56.25) and by a HPLC experiment (Fig. 1) in which the content of the reaction products (Fig. 1,b) was compared with an artificial nucleoside mixture containing the pure nucleosides 1a - c. From Fig. 1,a, it is also apparent that the 7-halogeno substituents make the parent

Scheme

Scheme

OCH₃ X

N

HCHN

N

N

i)

2a-c

$$iii$$
 b
 $Aa \times = H$, R = isobutyryl

 $b \times = Br$, R = isobutyryl

 $c \times = I$, R = isobutyryl

 $c \times = I$, R = isobutyryl

 $c \times = I$
 $c \times = I$

i) 0.5N NaOMe/MeOH, r.t., overnight. ii) NaNO₂, 10% AcOH/H₂O, r.t., 30 min. iii) Me₃SiCl, NaI, MeCN, r.t., 30 min. iv) 2N aq. NaOH, reflux, 3 days.

Time [min]

Fig. 1. Reversed-phase HPLC profiles of a) an artificial mixture of the nucleosides $\mathbf{1a-c}$ and b) the reaction products obtained after demethylation of $\mathbf{5b}$. Column, RP-18 (200 × 10 mm); gradient: 0 min 100% B, 10 min 3% A, 20 min 5% A, 30 min 8% A, 40 min 10% A, 50 min 13% A in B; A = MeCN, B = 0.1M (Et₃NH)OAc buffer, pH = 7.0.

nucleoside **1a** much more lipophilic, as demonstrated by the increased retention times on the reversed-phase HPLC column.

To avoid the halogen exchange during the demethylation of **5b**, the reaction was performed with NaBr instead of NaI in the presence of Me₃SiCl. Unfortunately, demethylation did not take place under these conditions. Thus, the demethylation protocol was changed. An alkaline medium (2n NaOH, reflux, 3 days) was used for the removal of the MeO group. This nucleophilic displacement reaction on compound **5b** yielded the pure nucleoside **1b**. The conditions were also applied to **5c**, thus forming **1c** (see *Scheme* and *Table 1*).

Table 1. Demethylation of Compounds 5b,c under Either Cleavage or Nucleophilic Displacement Conditions

Educts	Reagents	Product	Yield [%]
5b	Me ₃ SiCl/NaI	1b/1c 2:3	
5c	Me ₃ SiCl/NaI	1c	91
5b	Me ₃ SiCl/NaBr	no reaction	
5b	2n aq. NaOH	1b	78
5c	2n aq. NaOH	1 c	80

All compounds were characterized by ¹H- and ¹³C-NMR spectroscopy as well as by elemental analysis (*Table 2* and *Exper. Part*). According to *Table 2*, the C(7) signals (purine numbering) of the 7-substituted 7-deaza-2'-deoxyxanthosines **1b,c** are shifted

	C(2) ^b) C(2) ^c)	C(4) ^b) C(6) ^c)	C(4a) ^b) C(5) ^c)	C(5) ^b) C(7) ^c)	$C(6)^{b}$) $C(8)^{c}$)	C(7a) ^b) C(4) ^c)	MeO
1a [1]	150.7	159.5	99.4	103.1	117.6	138.0	
b	150.4	158.4	97.2	91.1	117.0	138.3	
c	150.3	158.8	103.1	56.2	122.2	138.7	
2b	159.7°)	162.8 ^e)	96.2	87.2	118.8	153.6	53.1
c	160.2°)	163.6 ^e)	99.5	49.4	124.9	155.0	52.5
4b	152.7	162.9	100.9	87.9	122.3	151.8	54.2
c	152.3	162.8	103.3	52.2	127.3	152.2	53.9
5b	160.1e)	163.7°)	97.8	87.2	120.3	150.9	53.6
c	159.8°)	163.8°)	100.2	51.9	125.5	151.7	53.5
	C(1')	C(2')	C(3')	C(4')	C(5')		
1a [1]	85.5	d)	70.8	87.3	61.4		
b	85.4	d)	70.6	87.4	61.3		
c	85.4	d)	70.6	87.4	61.3		
2b	82.1	d)	70.9	87.1	61.9		
c	82.9	d)	70.8	87.9	62.7		
4b	83.1	35.8	74.1	81.4	63.6		
c	82.9	37.8	74.0	81.2	63.5		
5b	83.0	d)	70.7	87.2	61.6		
c	83.0	ď)	70.7	87.2	61.6		

Table 2. ¹³C-NMR Chemical Shifts of 7-Deaza-2'-deoxyxanthosines^a) and of Synthetic Precursors

upfield when the C-atom is halogenated (δ (C-H) 103.11, δ (C-Br) 91.19, δ (C-I) 56.25). The UV spectra of compounds **1b**,**c** and for comparison of **1a** were measured in 0.1m sodium phosphate buffer (pH 7.0). The spectra show three distinct maxima at 215, 250, and 282 nm for **1a**, 222, 256, and 285 nm for **1b**, and 225, 259, and 285 nm for **1c**. This indicates that the 7-halogeno substituents induce a bathochromic shift. Moreover, the p K_a values were determined in the same buffer solution. Only one p K_a was found between pH 3 and 10. The p K_a value for the parent compound **1a** is 6.6, while the halogenated derivatives show lower values, *i.e.*, 6.1 for **1b** and 6.2 for **1c**. The p K_a of xanthosine is lower (5.7).

2. Conformational Properties of the 7-Deazaxanthine Nucleosides 1a-c. From a series of 7-deazapurine 2'-deoxyribonucleosides, it was reported that substituents of the base moiety can influence the sugar puckering. Such conformational changes of 7-substituted 7-deazapurine-2'-deoxynucleosides [6][8][19][20] have been studied on the basis of vicinal ${}^{1}H$, ${}^{1}H$ -coupling constants by means of the PSEUROT 6.2 program [21][22]. Thus, calculations were performed with pseudorotational starting parameters recommended in the users manual of the program ($\Phi_{max} = 36^{\circ}$ (both northern (N) and southern type (S)); $P_N = 19^{\circ}$; $P_S = 156^{\circ}$). The input contained the following ${}^{1}H$, ${}^{1}H$ -coupling constants: J(1',2'), J(1',2''), J(2',3'), J(2'',3'), and J(3',4') (2'' = short form of H'-C(2')). During the iterations, either the puckering parameters (P, Φ_{max}) of the minor conformer (N) or the puckering amplitudes of both conformers were constrained. In all cases, the root-mean-square (r.m.s.) values were ≤ 0.4 Hz and the

^{a)} Measured in $(D_6)DMSO$ at 25° . ^{b)} Systematic numbering. ^{c)} Purine numbering. ^{d)} Superimposed by $(D_6)DMSO$. ^{e)} Tentative.

 $|\Delta J_{\text{max}}| \le 0.5$ Hz. The coupling constants J(1',2'), J(1',2''), J(2',3'), J(2'',3'), and J(3',4') are given in the *Exper. Part* and the conformer populations in *Table 3*.

Table 3. N/S-Conformer Popular	ions of the Sugar Moietie	s of Halogenated	Pyrrolo[2,3-d]pyrimidine Nucleo-
sides Measured in D_2O at 298 K			

	Sugar conformation			Sugar conformation	
	% N	% <i>S</i>		%N	% <i>S</i>
1a	24	76	7a	28	72
b	28	72	b	28	72
c	27	73	с	31	69
6a	24	76	8a	33	67
b	29	71	b	33	67
c	29	71	с	34	66

From the data shown in *Table 3*, some general trends can be deduced. The nonhalogenated compound $\mathbf{1a}$ shows a population of ca. 76% of the *S*-conformers; the conformation of the bromo and iodo derivatives $\mathbf{1b}$, \mathbf{c} are shifted towards N (72 and 73% S). These data demonstrate that the higher the electron-withdrawing effect of the 7-substituent is, the more the $N \rightleftharpoons S$ equilibrium of the sugar moiety is biased towards the N-conformation [23][24]. *Table 3* compares the data with a series of other 7-halogenated 7-deazapurine nucleosides $\mathbf{1a} - \mathbf{c}$ related to dA, dG, and dI [6-9][25][26], *i.e.*, $\mathbf{6a} - \mathbf{c}$, $\mathbf{7a} - \mathbf{c}$, and $\mathbf{8a} - \mathbf{c}$, which show the same phenomenon. The conformation in the solid state was already reported for compound $\mathbf{1a}$ [27]. The single-crystal X-ray-analysis shows that the sugar moiety adopts the same conformation in the crystalline state.

To establish the conformational parameters at the N-glycosylic bond, ${}^{1}H$ -NOE difference spectra of compounds $\mathbf{1a} - \mathbf{c}$ were measured. As can be seen from $Table\ 4$, irradiation of H - C(8) resulted in an NOE at H - C(1') of 7.3% for the nucleoside $\mathbf{1a}$, 5% for $\mathbf{1b}$, and 5.3% for $\mathbf{1c}$. Application of a calibration graph for the estimation of the 'syn'- and 'anti'-conformer populations according to [28] gave 'anti'-rotamer populations of 33% for $\mathbf{1a}$, 58% for $\mathbf{1b}$, and 55% for $\mathbf{1c}$. These data demonstrate that the nucleosides $\mathbf{1b}$,c prefer the 'anti'-conformation at the N-glycosylic bond, while $\mathbf{1a}$ is

shifted toward 'syn'. The 'syn'-conformation of **1a** is also observed in the crystalline state [27].

TC-1-1- 4	MOED	C7 D	1	D	D	
Table 4	NUE Data o	r / -11 0070-/	-deoxyxanthosine	<i>Herivanives</i>	Piirine	niimnering
racic i.	TOL Dan O	, Deuz,u 2	aconynamiosmic	Derivatives.	I dillic	mamoering.

	Proton irradiated	NOE observed ([%])
1a	H-C(8)	H-C(1') (7.3), $H-C(2')$ (2.3), $H-C(3')$ (0.9)
b	H-C(8)	H-C(1') (5.0), $H-C(2')$ (4.5), $H-C(3')$ (1.0)
c	H-C(8)	H-C(1') (5.3), $H-C(2')$ (4.5), $H-C(3')$ (1.0)

a) Measured in (D₆)DMSO at 45°.

It will be interesting to see whether the nucleosides **1b,c** can stabilize triple base pairs in triplex DNA according to the motif **I** and can base pair with the pyrimidine-2,4-diamine nucleoside (DAPy) in duplex structures as well (motif **II**). The triplexes are expected to be more stable than those incorporating **1a**, due to the presence of the lipophilic electron-withdrawing character of the 7-halogeno substituents. However, it remains to be established whether the substituents have enough space to be well accommodated in the triplex structure. Compound **1a** forms a nanotube in the solid state [27]. Thus, X-ray analyses will be performed on compounds **1b,c**, and the effect of the 7-substituents within the nanotube will be investigated. Moreover, the antiviral activity of the compounds will be tested as some pyrrolo[3,4-d]pyrimidine nucleosides show inhibitory activity against the hepatitis C virus. The synthesis of oligonucleotides containing the nucleosides **1b,c** as well as base-pairing studies are currently under investigation.

Fig. 2. Suggested base triplet (motif I) and base duplex (motif II) of 1a-c

We thank Dr. *H. Rosemeyer* and Dr. *Y. He* for the NMR spectra. We also thank *Eva-Maria Becker* for her help in determining pK_a values and *Monika Dubiel* and *Elisabeth Feiling* for their excellent help in the preparation of this manuscript. We gratefully acknowledge financial support by the European Community (Grant No. QLRT-2001-00506, 'Flavitherapeutics').

Experimental Part

General. All chemicals were purchased from Aldrich, Sigma, or Fluka (Sigma-Aldrich Chemie GmbH, Deisenhofen, Germany). Solvents were of laboratory grade. TLC: aluminium sheets, silica gel $60~F_{254}$, 0.2~mm layer (VWR, Germany). Ion exchange: Serdolit AD-4 resin, 0.1-0.2~mm (Serva Electrophoresis GmbH, Heidelberg, Germany). Column flash chromatography (FC): silica gel 60~(Merck, Germany) at 0.4~bar; sample collection with an UltraRac II fraction collector (LKB Instruments, Sweden). UV Spectra: U-3200 spectrometer (Hitachi, Tokyo, Japan); λ_{max} (ϵ) in nm. NMR Spectra: Avance-250 or AMX-500 spectrometers (Bruker, Karlsruhe, Germany), at 250.13 MHz for 1 H and 13 C; δ in ppm rel. to Me₄Si as internal standard, J values in Hz. Elemental analyses were performed by Mikroanalytisches Laboratorium Beller (Göttingen, Germany).

5-Bromo-7-(2-deoxy-β-D-erythro-pentofuranosyl)-4-methoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amine (**2b**). Compound **4b** (1.0 g, 1.30 mmol) [8] in 0.5M NaOMe in MeOH (50 ml) was stirred overnight at r.t. The solvent was evaporated and the residue applied to FC (silica gel, column 10×5 cm, CH₂Cl₂/MeOH 95:5): **2b** (512 mg, 75%). Colorless solid. M.p. 170°. TLC (silica gel, CH₂Cl₂/MeOH 9:1): R_f 0.5. UV (MeOH): 230 (28600), 265 (8300), 289 (7000). ¹H-NMR ((D₆)DMSO): 2.09 (m, H_a-C(2')); 2.34 (m, H_β-C(2')); 3.49 (m, 2 H-C(5')); 3.76 (m, H-C(4')); 3.92 (m, MeO); 4.28 (m, J=2.2, H-C(3')); 4.95 (m, J=5.4, 5.4, OH-C(5')); 5.23 (m, J=3.7, OH-C(3')); 6.39 (m, J=2.6, 5.8, H-C(1')); 6.43 (m, NH₂); 7.27 (m, H-C(6)). Anal. calc. for C₁₂H₁₈BrN₄O₄ (359.1): C 40.13, H 4.21, Br 22.25, N 15.60; found: C 40.20, H 4.28, Br 22.1, N 15.49.

5-Bromo-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1,7-dihydro-4-methoxy-2H-pyrrolo[2,3-d]pyrimidin-2-one (**5b**). To a soln. of **2b** (407 mg, 1.13 mmol) in 10% aq. AcOH (85 ml), a soln. of NaNO₂ (182 mg, 2.64 mmol) in H₂O (10 ml) was added dropwise while stirring. Stirring was continued for 0.5 h, and the solvent was evaporated *in vacuo*. The residue was applied to FC (silica gel, column 10×2.5 cm, CH₂Cl₂/MeOH 95 :5): **5b** as a colorless solid, which was crystallized from EtOH (357 mg, 87%). M.p. 169 –170°. TLC (silica gel, CH₂Cl₂/MeOH 9: 1): R_1 0.44. UV (MeOH): 225 (24300), 284 (6100). ¹H-NMR ((D₆)DMSO): 2.16 (m, H_a −C(2')); 2.39 (m, H_a −C(2')); 3.52 (m, 2 H −C(5')); 3.79 (m, H −C(4')); 3.97 (m, MeO); 4.30 (m, H −C(3')); 5.04 (m, OH −C(5')); 5.27 (m, J = 3.7, OH −C(3')); 6.39 (m, J = 6.2, 7.6, H −C(1')); 7.45 (m, H −C(6)); 11.63 (br. m, NH). Anal. calc. for C₁₂H₁₄BrN₃O₅ (360.16): C 40.02, H 3.92, Br 22.19, N 11.67; found: C 40.2, H 4.06, Br 22.38, N 11.54.

5-Bromo-7-(2-deoxy-β-D-erythro-pentofuranosyl)-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione (**1b**). *Method A:* Compound **5b** (110 mg, 0.305 mmol) in 2n NaOH (7 ml) was stirred under reflux for 3 days. The cold soln. was neutralized with 1n aq. AcOH and evaporated and the residue dissolved in H₂O (25 ml) and subjected to ion exchange (*Serdolit AD-4*, column 12 × 1.5 cm). The salt was washed out with H₂O and the product eluted with MeOH/H₂O 1:1: **1b** (82 mg, 78%). Colorless solid that was crystallized from H₂O to give slightly colored crystals. M.p. > 210°. TLC (silica gel, CH₂Cl₂/MeOH 9:1): R_1 0.37. UV (0.1m NaH₂PO₄ buffer pH 7.0): 221 (20500), 256 (9000), 285 (5900). ¹H-NMR ((D₆)DMSO): 2.16 (m, H_α-C(2')); 2.22 (m, H_β-C(2')); 3.53 (m, 2 H-C(5')); 3.82 (m, H-C(4')); 4.29 (m, H-C(3')); 5.30 (d, J = 3.2, OH-C(3')); 6.12 (dd, J = 7, 6.5, H-C(1')); 7.13 (s, H-C(6)); 10.74 (s, NH). ³J(H,H) in D₂O at 298 K for pseudorotational parameters: J(1',2') = 7.05, J(1',2") = 6.60, J(2',3') = 6.40, J(2",3') = 3.20, J(3',4') = 3.10. Anal. calc. for C₁₁H₁₂BrN₃O₅ (346.13): C 38.17, H 3.49, Br 23.08, N 12.14; found: C 38.03, H 3.39, Br 22.68, N 11.57.

Method B: To a suspension of 5b (550 mg, 1.52 mmol) in MeCN (20 ml) were added NaI (450 mg, 3 mmol) and Me₃SiCl (442 μ l, 3.46 mmol) at r.t. while stirring. Stirring was continued for 1 h, and the mixture was filtered. The residue was washed with MeCN and crystallized from H₂O affording 1b/1c (503 mg). Slightly colored crystals.

7-(2-Deoxy-β-D-erythro-pentofuranosyl)-5-iodo-4-methoxy-7H-pyrrolo[2,3-d]pyrimidin-2-amine (2c). A soln. of 4c [8] (350 mg, 0.61 mmol) in 0.5N NaOMe (40 ml) was stirred overnight at r. t. The solvent was evaporated and the residue adsorbed on silica gel and subjected to FC (silica gel, column 12×3 cm, CH₂Cl₂/MeOH 95:5): 2c (195 mg, 79%). Colorless solid. M.p. 159–160°. TLC (CH₂Cl₂/MeOH 9:1): R_f 0.48. UV (MeOH): 233 (31200), 266 (2800), 289 (7300). ¹H-NMR ((D₆)DMSO): 2.08 (m, H_a-C(2')); 2.36 (m, H_β-C(2')); 3.48 (m, 2 H-C(5')); 3.75 (m, H-C(4')); 3.92 (s, MeO); 4.27 (d, J=2.2, H-C(3')); 4.94 (dd, J=5.4, 5.4, OH-C(5')); 5.22 (d, J=3.7, OH-C(3')); 6.37 (d, J=5.8, H-C(1')); 6.39 (s, NH₂); 7.29 (s, H-C(6)). Anal. calc. for C₁₂H₁₅IN₄O₄ (406.1): C 35.48, H 3.72, I 31.24, N 13.79; found: C 35.62, H 3.84, I 30.72, N 13.84.

7-(2-Deoxy- β -D-erythro-pentofuranosyl)-1,7-dihydro-5-iodo-4-methoxy-2H-pyrrolo[2,3-d]pyrimidin-2-one (**5c**). To a soln. of **2c** (1.0 g, 2.46 mmol) in 10% aq. AcOH (150 ml), a soln. of NaNO₂ (290 mg, 4.2 mmol) in H₂O (10 ml) was added dropwise while stirring. The reaction was continued for 0.5 h. The solvent was evaporated and residue adsorbed on silica gel and applied to FC (silica gel, column 10×5 cm, CH₂Cl₂/MeOH

95:5): **5c** as a colorless solid, which was crystallized from EtOH to give colorless crystals (654 mg, 65%). M.p.158–160°. TLC (CH₂Cl₂/MeOH 9:1): $R_{\rm f}$ 0.4. UV (MeOH): 227 (23200), 286 (6300). ¹H-NMR ((D₆)DMSO): 2.13 (m, H_{α}-C(2′)); 2.39 (m, H_{β}-C(2′)); 3.52 (m, 2 H-C(5′)); 3.79 (m, H-C(4′)); 3.96 (s, MeO); 4.30 (m, H-C(3′)); 5.04 (s, OH-C(3′)); 5.25 (d, J = 3.7, OH-C(5′)); 6.37 (dd, J = 6.6, 7.2, H-C(1′)); 7.46 (s, H-C(6)); 11.57 (br. s, NH). Anal. calc. for C₁₂H₁₄IN₃O₅ (407.1): C 35.40, H 3.47, I 31.17, N 10.32; found: C 35.48, H 3.55, I 31.20, N 10.34.

7-(2-Deoxy-β-D-erythro-pentofuranosyl)-5-iodo-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione (1c). Method A: As described for 1b, with 5c (50 mg, 0.12 mmol) and 2N aq. NaOH (3 ml): slightly colored 1c (35 mg, 80%).

Method B: As described for **1b**, with **5c** (620 mg, 1.52 mmol), MeCN (20 ml), NaI (450 mg, 3 mmol), and Me₃SiCl (442 μl, 3.46 mmol): **1c** (543 mg, 91%). Slightly colored crystals. M.p. > 210°. TLC (silica gel, CH₂Cl₂/MeOH 9:1): R_f 0.36. UV (0.1м aq. NaH₂PO₄ buffer, pH 7): 224 (21500), 259 (9700), 285 (6800). ¹H-NMR ((D₆)DMSO): 2.16 (m, H_α-C(2')); 2.27 (m, H_β-C(2')); 3.57 (m, 2 H-C(5')); 3.82 (m, H-C(4')); 4.28 (m, H-C(3')); 5.28 (d, J = 3.3, OH-C(3')); 5.53 (s, OH-C(5')); 6.12 (dd, J = 7, 6.5, H-C(1')); 7.14 (s, H-C(6)); 10.70 (s, NH); 11.70 (s, NH); s (H,H) coupling constants in D₂O at 298 K for pseudorotational parameters. J(1',2') = 6.89, J(1',2'') = 5.90, J(2',3') = 5.81, J(2'',3') = 2.75, J(3',4') = 3.00. Anal. calc. for C₁₁H₁₂I-N₃O₅ (393.1): C 33.61, H 3.08, I 32.28, N 10.69; found: C 34.14, H 3.34, I 31.56, N 10.46.

REFERENCES

- [1] F. Seela, H. Driller, U. Liman, Liebigs Ann. Chem. 1985, 312.
- [2] J. F. Milligan, S. H. Krawczyk, S. Wadwani, M. D. Matteucci, Nucleic Acids Res. 1993, 21, 327.
- [3] M. Friedkin, J. Am. Chem. Soc. 1952, 74, 112.
- [4] T. Lindahl, Nature (London) 1993, 362, 709.
- [5] T. Suzuki, Y. Matsumura, H. Ide, K. Kanaori, K. Tajima, K. Makino, Biochemistry 1997, 36, 8013.
- [6] F. Seela, H. Thomas, Helv. Chim. Acta 1994, 77, 897.
- [7] F. Seela, M. Zulauf, H. Rosemeyer, H. Reuter, J. Chem. Soc., Perkin Trans. 2 1996, 2373.
- [8] N. Ramzaeva, F. Seela, Helv. Chim. Acta 1995, 78, 1083.
- [9] N. Ramzaeva, C. Mittelbach, F. Seela, Helv. Chim. Acta 1999, 82, 12.
- [10] F. Seela, X. Peng, Synthesis 2004, in press.
- [11] F. Seela, H. Thomas, Helv. Chim. Acta 1995, 78, 94.
- [12] F. Seela, M. Zulauf, Chem.-Eur. J. 1998, 4, 1781.
- [13] N. Ramzaeva, F. Seela, Helv. Chim. Acta 1996, 79, 1549.
- [14] F. Seela, K. Shaikh, unpublished results.
- [15] M. J. Lutz, H. A. Held, M. Hottiger, U. Hubscher, S. A. Benner, Nucleic Acids Res. 1996, 24, 1308.
- [16] F. Seela, K. Shaikh, T. Wiglenda, Nucleosides, Nucleotides, Nucleic Acids 2003, 22, 1239.
- [17] J. A. Miller, M. J. Nunn, J. Chem. Soc., Perkin Trans. 1 1975, 416.
- [18] K. Takagi, N. Hayama, S. Inokawa, Chem. Lett. 1978, 1435.
- [19] F. Seela, M. Zulauf, Synthesis 1996, 726.
- [20] F. Seela, Y. Chen, Chem. Commun. 1996, 2263.
- [21] J. van Wijk, C. Altona, 'PSEUROT 6.2 A Program for the Conformational Analysis of the Five membered Rings', University of Leiden, 1993.
- [22] C. A. G. Haasnoot, F. A. A. M. de Leeuw, C. Altona, *Tetrahedron* **1980**, 36, 2783.
- [23] E. Egert, H. J. Lindner, W. Hillen, M. C. Böhm, J. Am. Chem. Soc. 1980, 102, 3707.
- [24] W. Uhl, J. Reiner, H. G. Gassen, Nucleic Acids Res. 1983, 11, 1167.
- [25] H. Rosemeyer, M. Zulauf, N. Ramzaeva, G. Becher, E. Feiling, K. Mühlegger, I. Münster, A. Lohmann, F. Seela, Nucleosides, Nucleotides 1997, 16, 821.
- [26] H. Rosemeyer, N. Ramzaeva, M. Zulauf, H. Thomas, Y. Chen, C. Mittelbach, F. Seela, Nucleosides, Nucleotides 1997, 16, 1447.
- [27] F. Seela, T. Wiglenda, H. Rosemeyer, H. Eickmeier, H. Reuter, Angew. Chem., Int. Ed. 2002, 41, 603.
- [28] H. Rosemeyer, G. Tóth, B. Golankiewicz, Z. Kazimierczuk, W. Bourgeois, U. Kretschmer, H.-P. Muth, F. Seela, J. Org. Chem. 1990, 55, 5784.

Received January 29, 2004